
Manual for the

Dialogue Annotation

& Research Tool

(DART)

Version 3.0

Author:

Martin Weisser

May 2019

Contents

1 Introduction .. 1

2 Overview of the DART functionality ... 1

3 The DART input format ... 3

4 Processing options for annotation .. 6

4.1 Adding a new file to a corpus .. 6

4.2 Selecting file(s) for processing .. 6

4.3 Pre-processing .. 8

4.4 Corpus annotation .. 12

4.5 Post-processing .. 13

4.5.1 General editing options ... 15

4.5.2 (Re-)Numbering turns or c-units .. 16

5 Analysis options ... 17

5.1 Concordancing ... 17

5.2 Basic frequency analysis (uni- and n-grams) ... 19

5.3 Speech-act (frequency) analysis .. 21

5.4 Counting patterns ... 23

6 Evaluation options: sample selection & consistency checking 24

7 Creating & editing resources .. 25

7.1 Adjusting configuration options .. 25

7.1.1 Working with the corpus configuration editor .. 26

7.1.2 Customising XML resources .. 27

7.1.3 Changing DART startup options or defaults .. 28

7.2 Editing linguistic resource files ... 29

8 Keyboard shortcuts .. 33

8.1 Corpus File Handling ... 33

8.2 Editor Shortcuts ... 34

8.3 Punctuation Shortcuts .. 35

8.4 Annotation & Tagging ... 35

8.5 Analysis Shortcuts ... 35

9 Known Issues ... 36

Figure 1 The DART Interface .. 1

Figure 2 The basic DART XML format .. 3

Figure 3 Dialog for creating a new, ‘blank’, annotation file ... 6

Figure 4 Source selection options ... 6

Figure 5 Directory selector .. 7

Figure 6 File selector (multiple files selected) .. 7

Figure 7 Processing status indicator (prior to processing) .. 7

Figure 8 The built-in editor showing a file opened for pre-editing ... 8

Figure 9 The ‘Edit’ menu of the built-in XML editor ... 9

Figure 10 the ‘Split’ menu ... 9

Figure 11 The sentence splitter dialogue ... 10

Figure 12 The toolbars in the built-in XML editor .. 11

Figure 13 The ‘Insert values’ menu ... 11

Figure 14 example of the ‘Test unit’ function ... 12

Figure 15 The annotation options menu .. 12

Figure 16 The built-in XML editor showing a file opened for post-processing 14

Figure 17 The ‘syntax’ value menu ... 15

Figure 18 The ‘speech acts’ context menu .. 16

Figure 19. Concordance output for <w-qh and search term ‘what’ on the next line 18

Figure 20 A trigram frequency analysis, filtered for ‘I think’ ... 20

Figure 21 Sample speech-act frequency output, filtered by speaker & tag ‘dm’ 21

Figure 22 Sample speech-act ‘only’ frequency output, filtered by act ‘express’ 22

Figure 23 Pattern count for syntactic unit types (un-grouped) .. 23

Figure 24 The ‘Evaluation’ menu .. 24

Figure 25 The ‘Edit’resources’ menu .. 25

Figure 26 The corpus configuration editor .. 26

Figure 27 the ‘Configuration’ tab, showing the XML (container) tag configuration file 27

Figure 28 the ‘Resources’ menu .. 30

Figure 29 example of a synthesised domain-specific lexicon ... 30

1 Introduction

The Dialogue Annotation and Research Tool (DART, for short) is a research environment

designed to allow you to annotate and analyse single or multiple dialogues in batch mode, with

the ultimate aim to identify speech acts automatically, and thereby create pragmatically annota-

ted corpora that can then be investigated from a variety of perspectives, all within the same

environment. Once a set of dialogues has been analysed, the annotations can be verified and, if

necessary, post-edited directly. In addition to the basic annotation and analysis functionality,

DART also provides a convenient way for editing and manipulating many of the linguistic

resources required for such analyses in order to improve the annotation results and test relevant

hypotheses. This includes the ability to keep project notes, and to extract meta information

about speakers and the files they feature in.

The individual features and options will be discussed and illustrated in the following sections,

beginning with a brief overview of the DART environment.

2 Overview of the DART functionality

We’ll begin our brief overview with an ‘interface tour’. Figure 1 below provides a quick over-

view of the DART interface, with a corpus of already annotated files loaded into the workspace,

the middle section displaying an analysis of the speech-act statistics for the whole corpus, and

the right-hand section displaying an open lexicon (for a different corpus).

Figure 1 The DART Interface

2

DART provides facilities for loading a single file or selection of XML files (from a folder or

file list; see section 4.2 below) into the ‘Input files’ workspace, seen in the left-hand window

area, and running different actions on these. These actions may consist in pre-processing files

after loading them in to a built-in XML editor, triggered by double-clicking an entry in the one

of the lists in the IO workspace, splitting longer turns, automatically (re-)numbering turns, in-

serting punctuation tags, etc., or either annotating these files pragmatically or tagging them

morpho-syntactically in batch-mode. The latter function, however, should not be compared to

that of dedicated taggers, such as e.g. CLAWS, as it a) does not come anywhere near the same

accuracy as such taggers, and b) uses a tagset that is optimised for use within the pragmatic

annotation and other DART-specific routines, such as computer-assisted turn-splitting.

Files loaded either into the ‘Input files’ workspace, or the corresponding ‘Annotation output’

or ‘Tagging output’ workspaces (seen on the right-hand side of the IO workspace), can either

be analysed using various different analysis routines, such as concordancing, n-gram generation,

the extraction of speech-act or (syntactic) tag + speech-act frequencies for annotated data, or

the counting of specific annotation patterns, or post-edited in a similar fashion to the pre-proces-

sing provided for the input mode, again by opening the relevant file by using hyperlinks to

opening it in the built-in XML editor.

DART also, as much as possible, provides options for editing many of the resources required

to perform the analyses/annotation, such as e.g. creating configurations for new domains/cor-

pora, editing domain-specific lexica or keyword ‘thesauri’, syntax definitions, etc. Even though

the interface has been developed to be able to control many of these resources easily, even for

linguists not versed in programming, some of them currently still require an in-depth knowledge

of the system, as well as the Perl programming language DART is written in, so that it’s

probably best to leave those alone until such time that better and more intuitive interfaces can

be developed in future.

At the moment, DART only works for English, but the overall design should eventually make

it possible to use one-and-the-same system to analyse different languages.

3

3 The DART input format

The DART input format consists of a very simple form of XML, as depicted in Figure 2 below.

Figure 2 The basic DART XML format

The first part of the file consists of the obligatory XML declaration, followed by the <dia-

logue>…</dialogue> container element, although an optional style sheet definition may be

added in between them. As DART XML files don’t have a separate header, relevant meta-

information can be stored in the form of attribute–value–pairs in the <dialogue> start element.

The ones that are absolutely required for the analysis to run are:

• id: a unique identifier for the file within the corpus

• corpus: the name of a corpus, which makes it possible to load domain-specific re-

sources, such as e.g. lexica, dynamically

• lang: the language of the dialogue, defaulting to en for English.

Additional attributes can be freely defined and will simply be copied to the output file, along

with the required ones, when the annotated or tagged file is created.

Inside the dialogue container, the file needs to be separated into individual <turn>…</turn>

containers, each containing two attributes, n (for the turn number) and speaker (current speaker

id). Additional attribute–value pairs may again be added freely by you. Within the turn, the

relevant sentence/clause-like units (c-units) should each appear on a separate line, i.e. separated

by a newline from one another and the XML tags. XML purists may frown upon this, but this

simplifies the processing in DART, and as XML is only used as a widely accepted output format,

and any XML parser or rendering browser can easily ignore the extra whitespace, this design

4

option was chosen for the sake of expedience and to make the output more easily readable for

pre- or post-processing without the need for any additional rendering engine.

All words, apart from proper names should be lowercased in order to simplify the processing.

After pragmatic annotation, each line representing a relevant syntactic and pragmatic unit will

end up being wrapped in another XML tag whose label depends on the syntactic category iden-

tified by DART, as well as a number of attributes. The syntactic categories currently defined

are:

• decl: declaratives

• q-yn: yes/no questions

• q-wh: wh-questions

• imp: imperatives

• address: terms of address

• dm: discourse markers (henceforth DMs)

• exclam: exclamations

• yes: yes responses

• no: no responses

• frag: fragments, i.e. syntactically ungrammatical or incomplete/elliptical syntactic

units

The attributes for each syntactic element, where not all need to be present in the output, are:

• n: the number of the relevant unit, numbered consecutively and independently of turns

• sp-act: the speech act or speech-act combination identified by DART

• polarity: surface polarity

• mode: semantico-pragmatic (interpersonal) information indicating the form of

interaction

• topic: semantic information pertaining to what is being talked about

• status: an indication as to whether the unit was abandoned, interrupted, or completed

• disflu: an indication of initial disfluency (not fillers), i.e. repetitions/restarts

Please note that the order of the attributes has changed from previous versions here in order to

reflect their relative importance – apart from n – in the inferencing process that identifies speech

acts better.

5

DART was originally designed for the analysis of unpunctuated text, but using sensible punc-

tuation markers for major syntactic or prosodic units helps to disambiguate the options for

speech acts, so empty XML elements indicating punctuation (e.g. <punct type='stop' />) can

now be included at the end of a c-unit to facilitate the analysis. The type attribute value options

recognised by DART routines within <punct /> elements are:

• stop: indicates finality, generally in declaratives

• query: indicates interrogative nature, usually occurring with either syntactically

marked questions or prosodically marked declarative questions

• level: indicates non-finality, possibly in lists

• incomplete: indicates that the speaker has not completed the unit

• exclam: indicates exclamations or imperatives

Other empty XML elements that are currently defined are:

• <pause />: attribute length or none, if length unknown

• <backchannel>: attribute content

• <overlap>: attributes n and type (options: start & end)

• <unclear />: attribute length or none for single words

• <comment />: attributes type (e.g. phon(etic) or syntax) and content; also sounds_like

for phonetic transcriptions

• <vocal />: for vocal ‘noises’, such as coughs, etc.

• <event />: any non-linguistic event, such as background noises

Additional categories can be freely added, either by typing them in or by adding additional

buttons or values to the pre- or post-processing options in the built-in XML editor (see section

7.1 below for details). All empty elements, apart from <pause /> and <punc /> are simply

ignored in the processing and written to the output file unchanged.

6

4 Processing options for annotation

4.1 Adding a new file to a corpus

A (new) sample file can be created through the ‘File → New’ menu option or pressing ‘Ctrl +

Alt+n’.

Figure 3 Dialog for creating a new, ‘blank’, annotation file

You will then be prompted to provide a filename, and DART will create a new skeleton XML

dialogue in the DART format, containing the XML declaration and a dialogue container tag,

with all required attributes, as well as the filename as an ID, and open this in a new XML editor

window. If you don’t specify a folder, this file will automatically be created in the ‘test’ folder

within the DART ‘data’ folder. Dialogue content can then be inserted from a text file, split into

turns, and pre-processed to conform to the expected format using the editor’s features in the

pre-processing phase (see 4.3 below).

4.2 Selecting file(s) for processing

Corpus data in the form of single or multiple files for pre-processing – and also for annotation,

or analysis – can be loaded via the ‘File → Select Source’ menu.

Figure 4 Source selection options

As Figure 4 above shows, selecting the ‘File → Select source → Directory’ option or pressing

the keyboard shortcut ‘Ctrl + Alt+d’ or ‘F2’ allows for a whole directory to be selected (see

Figure 5), while choosing ‘File()’ (‘Ctrl + Alt+f’) will open a file selection dialogue (see Figure

6), where individual or multiple files can be chosen.

7

Figure 5 Directory selector

If no directory is chosen, and the dialogue cancelled, or you press the ‘Esc’ key, by default, files

in the ‘test’ directory will be selected.

Figure 6 File selector (multiple files selected)

Cancelling the individual file selector dialogue will simply return you to the main DART inter-

face. Once a file or directory has been selected, the relevant file(s) are added to the ‘Input files’

workspace and double-clicking on a filename will open the relevant file in the built-in editor.

The default target directory will be set to a sub-directory of the input directory named ‘annotated’

(or ‘tagged’ in tagging mode). If the output target directory doesn’t exist, it will be created once

an annotation or tagging process is started. The processing status indicator towards the top right-

hand corner will also reflect the number of files selected, as illustrated in Figure 7.

Figure 7 Processing status indicator (prior to processing)

8

This processing status indicator will change to reflect the number of files processed once a

processing operation has been triggered.

IO lists can now also be ‘pruned’ easily, simply by (multi-)selecting the files to be excluded

and pressing ‘Del’ or using the ‘File → Remove selected’ menu option. Any ensuing annota-

tion, tagging, or analysis operation will then only be carried out on the remaining files.

4.3 Pre-processing

Any file that appears in the input files workspace can be opened in the built-in DART editor by

double-clicking one of the list entries below an IO workspace tab. Before any annotation has

been carried out, this will usually be done to pre-process the file to break long turns or to fix

issues that may have arisen from an automatic conversion process to the DART format.

Figure 8 The built-in editor showing a file opened for pre-editing

The editor has standard key bindings for saving (‘Ctrl + s’), copying (‘Ctrl + c’), cutting (‘Ctrl

+ x’), pasting (‘Ctrl + v’), as well as undo (‘Ctrl + z’) and redo (‘Ctrl + y’) operations. To close

the window, the binding ‘Ctrl + w’ can be used, and ‘Ctrl + S’ is a shortcut for saving and

closing the window in one go, while ‘Ctrl + f’ triggers the find popup box for you to type in a

search string. To repeat a search for the next occurrence once an item has been found and is still

highlighted, you can press’F3’. To trigger the replace popup, press ‘Ctrl + h’.

Note: Regex replace operations unfortunately don’t work in the current implementation for the

editor widgets in Perl/Tk, so that only the regular replacement options are possible, while the

regex option does work for normal searches without replacements. In addition, the search inter-

face is a bit quirky and sometimes remembers things that were put on the clipboard, so that the

9

search box may be prefilled. The best way to deal with this is to press ‘Ctrl + /’ to select the

everything in the search box and then simply type in your search string.

For ease of recognition, and to be able to distinguish the main text from them, empty elements

are colour-coded in blue, while their attribute names are highlighted in red.

The ‘Edit’ menu, shown in Figure 9, makes it possible to insert the contents of a text file into

a newly created corpus file or to add timestamps (‘Shift + F5’) in the initial stages of corpus

creation, while the remaining functions become more relevant once annotated files exist.

Figure 9 The ‘Edit’ menu of the built-in XML editor

The ‘Copy to clipboard’-submenu, as the name implies, provides the option to either copy a

‘cleaned-up’ piece of annotated text (‘Ctrl + Shift + c’) or the name of the currently open file

(‘Ctrl + b’) to the clipboard, so that they can e.g. be pasted into an article as examples. ‘Go to

turn…’ (‘Ctrl + Shift + g’) pops up a ‘GoTo’ dialog, where inputting the number of a specific

turn and pressing ‘Enter’ will automatically jump to that turn, while ‘Refresh’ (‘F5’) will trigger

the colour coding of the whole file after edit operations where this doesn’t happen automatically.

As generally longer turns in fact do constitute multiple pragmatic units, DART provides sup-

porting routines for splitting them, located on the ‘Split’ menu.

Figure 10 the ‘Split’ menu

The ‘Current turn’ entry essentially breaks the turn into two at the cursor position, automatically

inserting a turn-end tag, a new empty turn, and a turn-start tag at the point where the cursor is

located. This is useful when one realises that a turn has been incorrectly transcribed (or conver-

ted), and in fact the units belong to two different speakers.

The next two entries, ‘Short units off (line)’ (‘Ctrl + l’) and ‘Short units off (dialogue)’ (‘Ctrl

+ d’) respectively try to detect and split off shorter initial units, such as DMs, for either the

current line only or the whole dialogue. Although it’s useful to do this in the pre-processing

10

phase, it’s not absolutely necessary to do so, as the splitting routines will automatically be

carried out during the automated annotation process, too. However, performing the splitting

during the pre-processing phase, combined with manual correction, is more accurate, especially

as some shorter initial units, such as the ones containing so, may be ambiguous, where the same

word may either represent an initiating DM that indicates the beginning of a new phase in the

dialogue or a logical connector that indicates a conclusion. In the latter case, it would be wrong

to split this off, and this may in fact be prevented by adding an underscore character to the end

of the word, i.e. so_, thereby masking it. All such underscore characters will automatically be

removed from the final annotation.

The final menu entry, ‘Turns’, will trigger an interactive turn splitting process that suggests

potential splitting points to you, as depicted in Figure 11.

Figure 11 The sentence splitter dialogue

As the above figure shows, you can either accept a suggested splitting position, skip over it, or

change it by clicking on one of the separator position buttons, while clicking ‘Cancel’ will exit

the splitting routine altogether. However, as the split positions suggested by this routine may

not be very sophisticated, it’s probably better to break turns manually, which will also lead to a

better understanding of the contents of the dialogue that may help with later interpretations.

Another useful option is hidden behind the ‘Number’ menu, with its associated sub-menus

‘Turns’ (‘Ctrl + t’) and ‘Units’ (‘Ctrl + u’). In a pre-editing context, the ‘Turns’ sub-menu is the

most relevant, as it may often be necessary to split turns where an automated conversion

program has incorrectly assigned units within the same turn to one speaker, or merge them, e.g.

where backchannels have erroneously been handled as separate turns, thereby artificially brea-

king a speaker’s turn. As it would be very cumbersome to manually re-number all the turns in

such cases, especially in a rather lengthy dialogue, the editor will take care of this re-numbering

automatically for you via this menu option, returning you to the last edit position once the pro-

cess has been completed. Re-numbering units is only relevant after the pragmatic annotation

process has been carried out, and post-processing of units may be necessary.

For manual editing inside the editor, there is a set of user-configurable/-editable toolbars (see

Figure 12) and (context-)menu items (see Figure 13).

11

Figure 12 The toolbars in the built-in XML editor

The top toolbar contains a set of dialogue-relevant XML container elements that can either just

be inserted or wrapped around selected textual content. Most of these, though, apart from

<turn>, relate to dialogue elements that will only be relevant for post-processing, in order to

revise parts of the automated annotation. The second row contains a set of empty XML elements

that may be used predominantly in pre-editing mode, usually in combination with one or more

of the attributes inserted by clicking buttons found in the third row.

To prevent you from having to type in potential attribute values, thereby potentially also

producing typos, as well as to some extent constraining pre- or post-editors to only use a set of

fixed options to ensure consistency across a project, attribute values can be inserted from both

the ‘Insert values’ menu and also via the context (right-click) menu. The options for the former

are shown in Figure 13.

Figure 13 The ‘Insert values’ menu

The sets of values that are essentially relevant in a pre-processing context are all, apart from

‘speech act’ and ‘syntax’. For instance, ‘phonetic’ can be used to add values to transcribe

phonetic phenomena when using the ‘sounds_like’ attribute. ‘punctuation’ can be used to insert

attributes for the ‘punc’ empty element, but in fact it’s generally easier to use keyboard shortcuts

to insert the whole element. See section 8 below for details.

The remaining option, ‘speech act’ only becomes relevant in a post-processing context, once

pragmatic annotation has been carried out.

The ‘Test unit’ option, depicted in Figure 14, allows you to get a ‘sneak preview’ of how the

unit would be annotated.

12

Figure 14 example of the ‘Test unit’ function

Although this feature is mainly intended to make it possible to verify why a particular unit may

not have been annotated with an expected speech act after the pragmatic annotation process has

been carried out, it can also be used to identify gaps in the lexicon, weaknesses in the tagset or

syntax rules, as well as to test whether the text-cleanup routines successfully remove all un-

wanted material, such as backchannels or comments from the unit to be analysed. As the analy-

sis is only conducted for a single unit, however, the inferencing process that is normally conduc-

ted to identify the final speech-act label cannot be carried out fully to determine contextual

features, such as identifying whether a unit functions as a response, etc., and thus such ‘secon-

dary’ speech acts are not listed.

4.4 Corpus annotation

DART provides two options for annotating files loaded into the input files workspace. The main

one is the one labelled ‘Pragmatic’, and is triggered by selecting the relevant option from the

‘Annotation’ menu or pressing ‘Ctrl + Alt + a’.

Figure 15 The annotation options menu

The second option, ‘Tagging’ (‘Ctrl + Alt + t’), can be used for both un-annotated and annotated

files. This tagging, however, as pointed out above, is fairly rudimentary, and its accuracy can

and should in no way be compared to that of a dedicated tagger such as CLAWS. Its main

function is to verify issues pertaining to the pragmatic annotation process, such as finding incor-

rectly identified syntactic units, due to errors in the syntax rules or out-of-lexicon words.

All files selected for processing are annotated in batch mode without any further user input,

unless of course an error occurs in the processing, in which case one or more error messages

will be written to the ‘Debugging Output’ window at the bottom of the DART main window,

and the annotation process may be interrupted altogether, depending on the seriousness of the

13

error, or whether some form of error handling has successfully been implemented. Most fre-

quently, such errors relate to ill-formed XML, or incorrectly/incompletely specified resources,

such as e.g. a lang or corpus attribute missing from the ‘header’ of a file. To avoid any well-

formedness related errors, you should ideally check corpus data loaded into the workspace be-

fore running any annotations by selecting ‘Evaluation → Check wellformedness’. Missing or

incorrectly specified lang or corpus attributes will be reported during the annotation process

itself, though.

Having the appropriate attributes for lang and corpus present in the container element is

essential because only this way all the necessary resource files can be dynamically loaded while

reading in dialogue files for annotation.

During the annotation process, the processing status indicator is constantly updated upon

completion of the annotation of each file, and the name of the result file is inserted in the

relevant output files workspace. Even annotating relatively long files of more than 100 turns

should generally take no longer than about a maximum of 20-30 seconds, so if the processing

indicator has not changed for a longer period of time, it’s likely that an error may have occurred,

in which case you should first check the debugging output for errors to fix, and, in the worst

case, close and restart DART.

4.5 Post-processing

Just as for pre-editing, files for post-processing are opened in the built-in XML editor window

by double-clicking one of items on an IO list tab. If the post-processing is to be done

immediately after the annotation process, the list will be on one of the output tabs, but if the

post-processing is started at a later time, the files will need to be loaded into the list on the

‘Input files’ tab again.

A pragmatically annotated file will look very different from an un-annotated one because

additional XML elements will have been wrapped around the individual syntactic units, and

also because these elements are colour-coded in order to reflect at least part of their (semanti-

co-)pragmatic potential, which can be seen in Figure 16.

14

Figure 16 The built-in XML editor showing a file opened for post-processing

The colour coding semantics are as follows:

• decl: grey background, blue text

• q-yn: ivory background, red text (signifying closed set of options for answers)

• q-wh: ivory background, green text (signifying open set of options for answers)

• imp: light blue background, red text (signifying imperative force)

• address: orange background, dark blue text

• dm: greyish blue background, orange text

• exclam: light-blue background, orange text

• yes: blue background, white text (mnemonic symbolising a ‘forward-moving’ option,

as in an ‘entry permitted’ traffic sign)

• no: red background, white text (mnemonic symbolising a blocking option, as in an ‘no

entry’ traffic sign)

• frag: light blue background, black text

15

Beginnings of turns appear in black text colour, but their ends are ‘greyed out’, so as to make

them less prominent. Any textual material appears in black text colour, without any special

background. The tag colours can actually be edited in the ‘tag_colours.cnf’ configuration file,

but in order to change them, it’s necessary to know the X11 colour names1 or provide a hex

value prefixed by #.

4.5.1 General editing options

In general, the post-processing will consist in fixing any potential errors the program may have

made in the annotation phase. Most of these errors will generally pertain to incorrectly or in-

completely identified speech acts, but some of them may also be related to other levels of

annotation, such as e.g. errors in the syntactic annotation, in case the built-in rule set has not

been able to identify the nature of a unit, e.g. ‘mis-interpreting’ a declarative as a fragment, or

a fragment starting with an infinitive as an imperative, etc.

In case a syntactic element has been misidentified, the corresponding tag name can simply be

retyped or selected from the ‘syntax’ value or context menu (see Figure 17).

Figure 17 The ‘syntax’ value menu

To add or replace speech-act values, items can be selected from the relevant context menu item

(see Figure 18 below), too.

1 See https://en.wikipedia.org/wiki/X11_color_names#Color_name_chart.

https://en.wikipedia.org/wiki/X11_color_names%23Color_name_chart

16

Figure 18 The ‘speech acts’ context menu

As the number of potential speech acts is very high, the menu is sub-categorised alphabetically

to make it easier to find a particular speech act.

If, for some reason, you decide that a unit that was either not manually split in the pre-

processing or by some of the automatic splitting routines of the annotation process, then you

can add a manual line break between the units and move any relevant element items to be

retained via copy-and-paste, and then add a new syntactic element plus attributes by using the

toolbar options for wrapping text in element tags and creating attributes.

In some cases, for instance if turns have not been correctly marked in an automatic conversion

of dialogue data to the DART format, you can also manually break turns, and then insert the

appropriate turn tags and attributes, although, ideally, such issues should be identified and fixed

in the pre-processing stage of a corpus.

4.5.2 (Re-)Numbering turns or c-units

In both of the last two cases described above, for turns or units, respectively, the numbering

would of course then be off and need to be adjusted. As this would again be extremely tedious

and error prone if done manually, the XML editor provides functions for updating the numbers

automatically from the ‘Number’ item on the ‘Edit’ menu. These functions can be triggered

from anywhere within the text, and will automatically position the cursor again at the relevant

point after the update operation has been completed, so that post-processing can continue

smoothly.

17

5 Analysis options

As of version 2, DART no longer has an ‘Analysis’ menu. Instead, all analysis modules – ‘Con-

cordancer’, ‘N-grams’, ‘Speech-act stats’, and ‘Pattern count’ – are controlled via the relevant

tabs in the middle section of the program. The ‘Run’ button (Ctrl + r’) on the main program

toolbar is context-sensitive and triggers the respective analysis functions depending on which

of the notebook tabs is currently selected. All analysis functions, apart from the speech-act

analysis, can generate basic descriptive statistics for either annotated or un-annotated corpora.

The only option that remains from the original menu is a simple word count of the basic

textual content, i.e. excluding the contents of tags or empty elements. This function has now

been integrated into the ‘Corpus info’ menu.

The output of all modules can also be filtered for particular speakers or speaker groups via a

regex in the ‘Speaker/group restriction?’ box in the program’s main toolbar, and the frequencies

for the ‘N-grams’ and ‘Speech-act stats’ modules can be normed according to an adjustable

norming factor, whose default is set to 50, based on the assumption that a) it’s more sensible to

norm frequencies based on functional units, rather than the number of words, and b) that most

interactions/dialogues will contain at least 50 units.

5.1 Concordancing

Perhaps the most essential analysis feature DART incorporates is a (line-based) concordancing

facility located on the ‘Concordancer’ tab of the middle section. For non-annotated data, this

concordancer can be used to investigate particular expectations or hypotheses in a way that is

essentially rather similar to ‘traditional’ corpus pragmatics. More importantly, though, it allows

the researcher to explore annotated data, partly in order to verify or test the effectiveness of the

different processing routines at various levels, but mainly to develop an understanding of the

interplay of the different linguistic elements that contribute towards the generation of pragmatic

meaning. The concordance module, just like the other analysis modules, automatically takes

the currently ‘activated’ list of files in the IO workspace area as its input.

Figure 19 shows an illustration of a concordance output for the combined search for the <q-

wh> (syntactic) tag and the target word what on the next line, which only finds occurrences of

wh-questions that contain the word what.

18

Figure 19. Concordance output for <w-qh and search term ‘what’ on the next line

As the illustration above shows, the concordancer currently provides the option to look for a

combination of two search terms (patterns), where the terms may appear on different lines, and

the relative line number of the second term can be specified as either a positive or negative

integer, with a positive value indicating that the 2nd term is to follow, and a negative one that it

ought to precede. When searching for only a single term only, this term needs to be specified in

the ‘Term 1’ box.

While terms can be specified freely, some of the most common terms of interest for the analy-

sis of annotated dialogues are already predefined via auto-completable drop-down lists. Here,

the first box contains the beginnings of all syntactic elements and potential speech acts, while

the second holds only the speech-act attributes. Commonly used example search terms can also

be saved to a file that can be accessed and edited via the ‘Retrieve regexes’ button on the top

toolbar. The expression currently specified in the ‘Term 1’ box can also automatically be appen-

ded to the list of stored regexes by clicking on the ‘Store regex’ button on the ‘Concordancer’

tab. As the list is stored in a text file that allows comments to be inserted, explanations pertai-

ning to each entry can also be added, which makes it easier to remember their particular func-

tions, especially if they haven’t been used for some time.

If terms are specified freely, rather than picked from the dropdown lists, the full, rich set of

Perl regular expressions can be used. This makes it possible for advanced users to specify high-

ly complex patterns to search for, but at the same time still enables the ‘average user’ to simply

‘look for words’. Searches can be made case insensitive, something that may e.g. be required

for dialogue data that has been transcribed using uppercase characters for stressed syllables.

The output consists of the relevant target line with the search term(s) highlighted, and ‘sur-

rounded’ by a specified variable context of n numbers of lines preceding or following the target

19

line itself. In our example, the following context is set to 6 lines, allowing us to see the imme-

diate responses to the questions. The context is controlled via the spinners next to the ‘Lines

before’ and ‘Lines after’ labels. This make it possible to easily widen or collapse it in an appro-

priate manner and simply run the search again. Each hit is followed by a line containing the file

name and line number where it was found. The number of hits, as well as their dispersion, i.e.

document frequency, is provided above the output window.

Information from the concordancing window can be copied and pasted straight into a word-

processor if you want to e.g. extract only a few examples from a corpus for use in a publication.

Alternatively, a complete list of all concordance hits, along with information about the search

terms, number of hits, and dispersion, can be saved to a text file via ‘File → Save results to

file’ or pressing ‘Ctrl + o’ (with the cursor inside the results window). In the text output, ‘Term

1’ will be highlighted through three enclosing angle brackets, e.g. <<< <q-wh >>>, and, ‘term

2’, if present, through 3 enclosing square ones, e.g. [[[what]]], for the above example.

However, what’s perhaps even more useful in the annotation context is that the source infor-

mation for each individual hit again triggers a hyperlink that opens an XML editor window at

the relevant line number – with the search term highlighted –, allowing efficient on-the-spot

post-processing. This can, for instance, be used to automatically identify and select all occur-

rences where DART has been unable to assign a speech act to a unit, and thus quickly fill the

annotation gaps. Another use for this would be if a user who, due to a lack of programming

knowledge, does not have the expertise to fix particular analysis rules that have been identified

as misfiring, but has the linguistic understanding to identify these cases in the results, could

select all miscategorised instances and correct them in this way.

5.2 Basic frequency analysis (uni- and n-grams)

N-gram analysis is an important means of identifying recurring lexico-grammatical or phraseo-

logical patterns on different linguistic levels in dialogue corpora. And once these have been

discovered, they can be modelled and integrated into the automated annotation routines. The

‘N-grams’ tab in DART provides access to this functionality to create frequency/n-gram lists

for a given corpus. Unlike in other programs, such as AntConc, where unigrams are treated

separately as ‘Word lists’, DART treats word lists and longer n-gram lists in the same way and

combines them on the same analysis tab.

Once any recurrent ‘themes’ have been identified, their general patterns of occurrence, along

with any inherent variability, can be deduced, and regular expressions for pattern matching

created and grouped under suitable category labels in the different DART resource files (see

section 7.2 below). If such a pattern can be matched against a textual unit during the annotation

process, the corresponding label can be recorded and later potentially be used as part of the

inferencing process in identifying speech acts.

20

To make it easier for you to verify any hypotheses developed from looking at the frequency

data, all entries are again hyperlinked – via the raw frequency (F) –, so that they trigger the

built-in concordancer with pre-defined search terms. Figure 20 below illustrates the basic output

format and available configuration options in the form of a filtered trigram list.

Figure 20 A trigram frequency analysis, filtered for ‘I think’

A number of different sorting options exist to produce different ‘views’ of the data. The default

option is a frequency list sorted in descending order of frequency (n-1), with a secondary alpha-

betical sort order. This can be reversed (1-n) to list low-frequency items, such as hapax legome-

na, first, perhaps in order to identify highly domain-specific content. The next two options are

for alphabetical sorting (a-z) and its counterpart (z-a). While the first four options, as already

pointed out above, are mainly useful for identifying vocabulary or phraseological patterns, the

final sorting option (rev) creates a reverse-sorted list that may be used for identifying morpho-

logical features that can be modelled in the morpho-syntactic analysis (tagging) routines, or to

find n-gram sequences that belong to a common topic.

For genuine n-grams, i.e. more than one word, fillers can be removed based on regex patterns

to create cleaned up n-grams. These fillers are then automatically be re-interpolated into the

concordance searches if the ‘Interpolate’ option is checked because otherwise not all patterns

would be found again.

As before, the ‘Downcase’ option should probably only be used to handle data that uses mixed

case to represent prosodic features, such as stress, as otherwise the DART format assumes that

only proper nouns are capitalised, anyway.

21

The ‘Filter’ option makes it possible to ‘zoom in’ on particular patterns, again based on reg-

exes. The number of filtered n-grams displayed is reported along the full n-gram count. In the

above example, the filter causes only trigrams that contain i think to be displayed.

Apart from the raw frequencies, the ‘N-gram’ module also reports the (normed) relative fre-

quency (NF), the document frequency (DF), as well as the files (Files) that the n-gram occurs

in.

5.3 Speech-act (frequency) analysis

Producing ‘Speech-act stats’, of course only makes sense to use if a corpus has already been

annotated. The default output from this module lists speech acts according to the syntactic tag

they occur with, sorted first according to tag categories, then in descending frequency of the

speech act itself, plus the raw frequency (F) of occurrence in the corpus, the (normed) relative

frequency (N), and the document frequency (D). Some sample output, filtered by a particular

speaker, is shown in Figure 21.

Figure 21 Sample speech-act frequency output, filtered by speaker & tag ‘dm’

As can be seen here, the frequency list also includes information as to how many units were

identified or left unlabelled (marked unrecognised) on the speech-act level, as well as their

percentages. As the list presented above is filtered ‘By tag(s)’ for ‘dm’, the ‘Filtered count’

reported for all units of this particular speaker – reported as ‘Total units analysed’ – contains

only 5 tag + act category combinations. In this mode, it is also possible to filter by specific act

in addition to tags, or only by acts. The ‘Prefiltering options’ make it possible to exclude

‘secondary’ acts that mark a specific response type or abandonment of the unit from being

reported along with the ‘primary’ ones, so that, in effect, all acts that do or don’t occur with

excluded secondary ones get reported together. Once the pre-filtering list is activated, it can

also be edited, for instance to exclude only markers of abandonment. The list itself is defined

22

in the DART configuration file and can, if necessary, be adjusted there, too, to create different

startup options.

The tag + act frequency list in general allows the researcher to gain an overview of the distri-

bution of particular dialogue features, as well as to identifying potential analysis problems or

gaps in the system’s rules for a given corpus/domain, especially in cases where it has not been

possible to assign a relevant speech act.

The second mode for speech-act analysis is used to report speech-act categories, but, this time,

not grouped according to tags. An example of this is displayed in Figure 22.

Figure 22 Sample speech-act ‘only’ frequency output, filtered by act ‘express’

Here, all secondary acts are filtered out, and the speech acts reported are filtered by the term

‘express’, which represents a partial speech act that only occurs as one of its various sub-types,

such as expressOpinion, which represents a subjective impression or attitude on the part of the

speaker. The option for filtering ‘By tag(s)’ is unchecked, so, even if any expression may still

be in the corresponding box, the filter itself will be deactivated. In this mode, the same types of

frequencies are reported, but, in addition, a list of all tags the particular speech act occurs with,

along with their frequencies, is appended in the ‘Tag(s)’ column.

23

5.4 Counting patterns

In addition to the other analysis modes, DART also offers an option for counting (regex)

patterns per speaker, and reporting a raw count of the frequencies. In order to do the count, it

goes through all selected files, automatically compiles a list of speaker IDs, and counts the

specified (sub-)patterns. A listing of such a count for all syntactic units can be seen in Figure

23.

Figure 23 Pattern count for syntactic unit types (un-grouped)

The above example counts and lists all the syntax categories separately, but as their combination

essentially represents the overall number of units per speaker, it would be useful to be able to

count and group them together, too. Doing so is possible by providing a grouping label for them

in the corresponding box on the right. Thus, for instance using the label ‘units’ in this box, and

provided that there is at least one set of grouping brackets present in the ‘Pattern’ box, which is

the case in our example, this will allow us to get a joined count for units reported instead of the

individual categories.

24

6 Evaluation options: sample selection & consistency checking

When you have to conduct some form of evaluation on the data that have been analysed, you’re

often faced with the issue of having to select an unbiased sample. DART facilitates this task by

allowing you to specify a fixed number of files to be selected randomly from a given data set

loaded into the input files workspace. These files can then be investigated in various ways,

either ‘manually’ or using the DART analysis features described above. This feature is triggered

by selecting ‘Choose files’ from the ‘Evaluation’ menu depicted below.

Figure 24 The ‘Evaluation’ menu

Upon clicking this option, you are prompted to input the number of files to be chosen randomly,

and the list of files will then be written to the output files workspace. The next option on the

menu, ‘Save file(s) to eval folder’, will then copy the selected files to a special folder called

‘eval’ within the ‘data’ folder for the relevant corpus, also clearing the output files workspace.

In the course of this process, a test is also run on the ‘eval’ folder to determine whether it already

contains any files, in which case you can either specify to delete any existing files, add the

newly chosen set, or cancel the operation, in case you want to manually back up any existing

evaluation files, e.g. to a sub-folder within the ‘eval’ folder, because DART only deletes files

in the main folder, but not (sub-)folders.

The final option, ‘Check wellformedness’, allows you to test the well-formedness and consis-

tency of the XML annotations to identify errors related to the XML structure of the corpus files.

Such errors would otherwise prevent the files from being displayed in a web browser or pro-

cessed by other applications that ‘understand’ XML coding if the corpus data is passed on to

other researchers who do not have access to DART. Any error messages resulting from this

check are written to the Debugging Output window at the bottom of the screen.

The debugging output window can also be used by the expert user to output interim analysis

results or other information for debugging purposes. Any error messages produced by the opera-

ting system or Perl (which DART is written in) are also redirected there to potentially help the

expert user to fix programming errors, and would allow the naïve user to copy and paste them

to pass them on to a more experienced one.

Furthermore, at the end of each annotation or tagging operation, an indication of the length of

the overall process is also provided in the ‘Processing time’ indicator near the top of the DART

window in order to be able to evaluate the efficiency of the tool in a rather rough manner. It’s

25

important to note, though, that this output only provides a relative measure of efficiency and

does not represent a true benchmark, as various factors may influence the behaviour of the tool.

Amongst those are the speed of the processor, to some degree the caching mechanisms of the

perl interpreter, the amount of debugging information output generated, etc.

7 Creating & editing resources

Being a research environment that tries to incorporate as many of the tasks involved in ana-

lysing and annotating dialogues, DART also provides convenient interfaces and mechanisms

that enable the researcher to create and update the relevant resources as much as possible. The

following sections will describe the different levels on which this is currently feasible – or

advisable – in some more detail.

7.1 Adjusting configuration options

One of the central notions in the design of DART is that of genericity. This means that many of

the resources that are employed in analysing dialogues are initially reduced to a common core

of elements that represent recurrent features of dialogues on different levels. These resources

are always available and already make it possible to analyse dialogues from new domains to a

relatively satisfactory extent without even creating or using additional resources. Augmenting

the generic core by suitable, more domain-specific resources then generally increases the quali-

ty of the analyses/annotations further. Some of the relevant areas where this notion is applicable

will be discussed further below.

As DART has thus been designed to maximise the flexibility in adapting its analysis resources

to different domains, as well as (at least theoretically) different languages, there are a variety of

features that make it possible to create new resources for this purpose, and to later ‘pull in’ these

resources at runtime. The ‘Configuration’ menu allows you to edit the main configurable pro-

perties for DART, such as the startup options or tags, attributes, and values for the XML editor

via ‘Edit configuration file’, as well as to create new domain/corpus folders via ‘Edit corpus

configuration’.

Figure 25 The ‘Edit’resources’ menu

26

7.1.1 Working with the corpus configuration editor

Clicking ‘Edit corpus configuration’ will open up the ‘Configuration editor’ window, as

illustrated in Figure 26.

Figure 26 The corpus configuration editor

Through this interface, you can add a new domain/corpus by selecting the ‘Add corpus entry’

option. This will add a new row to the configuration table, where the name of a corpus, as well

as (optionally) the names for one or more lexica (comma-separated), as well as a topic file, can

be specified. Once you choose the ‘Save configuration’ option, a new folder with the corpus

name will be created (if it doesn’t already exist), along with (currently) 3 sub-folders named

‘info’, ‘notes’, and ‘stats’. Please note, though, that files belonging to a corpus need not

necessarily reside inside this folder to be able to make use of the associated resources for

annotation, etc. as long as the corpus name appears in the header of any dialogue XML file, all

the necessary resources associated with it can always be loaded dynamically, provided of course

that they don’t inadvertently get deleted.

The first of the sub-folders can be used to store meta information on the corpus and the speakers.

Currently, there is only one option on the ‘Corpus info’ menu that make use of this, the ‘Create

→ Speaker and file info’, which extracts information about the speakers from the files and

creates 2 files, one called ‘files_and_speakers.txt’ and the other ‘speakers_and_files.txt’, where

the former lists file names and all the speakers that occur in them, while the latter lists speaker

names and their associated files. Future versions will probably include facilities for accessing

speaker properties, creating group definitions for speakers (e.g. call-centre agents & customers,

teachers & students, etc.) to allow you to create comparative descriptive statistics for individual

speakers or speaker groups, or potentially define various levels of ‘authority’ for a given speaker

27

to indicate whether there’s a hierarchical structure among/between speakers, which may, for

instance, allow DART to ‘re-define’ a speech act directive as a command, etc.

The second folder, ‘notes’, can be used to collect and store textual notes regarding different

observations related to the data or keeping records of editing processes, while the ‘stats’ folder

can be used to store the results of any frequency analyses conducted on the corpus.

If filenames have been specified for lexica and topic files, ‘dummy’ files, containing only

information about the entry format and date & time of creation, are created in the ‘Lex’ and

‘Topics’ folders for the relevant language2, respectively, if no file of the same name exists.

However, for lexicon files, usually a better option is to ‘synthesise’ a new lexicon from a corpus

loaded into the input files workspace. All lexicon and topic files that already exist when the

interface is opened are also hyperlinked to opening the relevant file in the editor.

7.1.2 Customising XML resources

Editing other configuration files is achieved by clicking on ‘Edit configuration file’. All these

files have the extension (‘.cnf’), and, once selected through the file open dialogue, will open in

the editor window below the ‘Configuration’ tab. As the editor windows below tabs have no

separate menus or toolbars, saving each open file is achieved by pressing ‘Ctrl + s’ inside the

editor, and closing it via ‘Ctrl + w’. If another file is still open in the editor when a new file is

opened, and this file has been edited without saving, you will first be prompted to save or

discard any changes made to that file before opening the new one. Upon closing DART, it will

also check for any unsaved files and prompt you to save them if necessary.

Figure 27 the ‘Configuration’ tab, showing the XML (container) tag configuration file

2 As stated before, to date only English is supported.

28

The format for the different configuration files varies, depending on the function and number

of the configuration elements described there, but each format is either easily recognisable or

can be identified via a format description at the top. However, what all these files have in

common is that they allow the addition of comment lines, which start with a hash mark (#), as

can e.g. be seen in Figure 27. Additional items can freely be added by you for all XML-related

manual annotation resources, thus allowing different projects to create their own customised

annotation options, as well as possibly constraining annotators/editors of the data to use only

items that appear on the relevant toolbars or menus. In order to remove existing entries tempora-

rily, the relevant lines can also simply be commented out.

7.1.3 Changing DART startup options or defaults

The main configuration file for DART itself, called ‘dart.cnf’, currently allows you to configure

the following options:

• the default startup folder: this is useful if you work with the same data for a longer

period of time and don’t want to have to go through the complete routine of choosing

a folder all the time in the directory selector dialogue; instead, once the dialogue is

open, you can simply press ‘Esc’ to load the default folder, while pressing ‘Enter’

without selecting a folder will automatically default to the ‘test’ folder in the main

‘data’ folder;

• the norming factor: as stated before, the norming factor is currently set 50, but if you

want to norm to higher or lower numbers, perhaps because the dialogues in your

corpus are longer, or because you want to norm to the lowest common denominator

of units based on particular speaker information from your corpus, you can easily do

so;

• the default analysis tab: this is useful for different stages of the analysis process; in

the beginning of a new corpus annotation project, it might be most useful to activate

the ‘Concordancer’ or ‘N-gram’ tabs automatically, while, once a corpus has been fully

annotated, switching to either the ‘Speech-act stats’ or ‘Pattern count’ may be more

useful;

• the background colour: I personally find the default glaring white of most programs

difficult on the eyes, especially when working with a program for extended periods of

time, but if you don’t like my choice for the background, feel free to specify a different

hex value ;-)

• the default value for the ‘type’ attribute of the <punc /> tag: by default, clicking on the

button for the empty ‘punc’ element, the attribute ‘stop’ will be inserted; if, however,

you e.g. find yourself working with data that contains a lot of questions, you can

change this to ‘query’;

29

• defaults for pre- and post-context: these options allow you to define how many lines

before or after a hit in the concordancer should be displayed; this is particularly useful

if you want to investigate interaction patterns, such as questions and their responses,

in which case you’ll probably want to set the default for the lines to follow to

something like 7 or even higher, so that you’ll be able to see the immediate responses

to any queries.

• defaults for height (in lines) and width (in characters) for the analysis and resource

editor windows: as the DART layout is fairly complex, it sadly doesn’t scale well for

different resolutions; I’ve therefore decided to set some defaults that allow all sub-

windows to be displayed, even at lower resolutions; especially if you have a larger

monitor, though, you can adjust these settings to be able to arrange the display of the

different program sections and the debugging window better;

• the default tagging format: currently, if you use the tagging feature (at all), by default

tags will be output on a separate line from the text, hence creating an interlinear

version; if you prefer a more common format, such as the traditional underscore one

or an XML output, you can change this option;

All of the options above also have explanations preceding them in the configuration file, so you

should easily be able to see how to change them. To be on the safe side, in order to be able to

revert to older/original settings, you can also copy and comment out the corresponding lines

before editing them. In this way, if you inadvertently delete information that might prevent

DART from staring properly, despite default also being set inside the program, you can also

open the file in any other text editor capable of producing UTF-8 output and change the settings

back.

Further default configuration options will probably also be introduced in the future, as well

as perhaps a more ‘interactive’ interface for setting/changing these.

7.2 Editing linguistic resource files

The ‘Resources’ menu provides access to editing and other functions for the linguistic resources

required for the annotation process, namely syntax, mode, topic, and lexicon files, which all

open below their respective tabs. Figure 28 shows the relevant menus.

30

Figure 28 the ‘Resources’ menu

Out of the sub-menu options depicted above, the ‘Lexica’ entry provides two additional tasks,

one that assists in the creation of new domain-specific lexica, ‘Synthesise lexicon’, and the

other, ‘Show words by tag’, which makes it possible to check if a word is listed under a specific

tag.

‘Synthesise lexicon’ essentially creates a word list out of the current corpus, then ‘subtracts’

all items that already exist in the generic lexicon, also carrying out some morphological analysis,

and then presents a list of suitable words (‘Word’), a dispersion-adjusted frequency value (‘AF’),

the raw frequency (‘F’), and finally a potential tag, in the lexicon editor for further editing (see

Figure 29).

Figure 29 example of a synthesised domain-specific lexicon

The list is sorted according to the adjusted frequency, which represents the importance of the

word in the corpus better and should help in making a decision as to whether the word should

be included or deleted. The ‘AF’ value is also hyperlinked to the concordancer in order to be

able to verify the use of the word in terms of PoS, especially if it may be grammatically polyse-

mous, i.e. represent multiple word categories. Once a decision has been made to include a word,

31

rather than delete it, all that remains to be done is to potentially reduce it to its base form,

remove the frequency information, and add a/correct the PoS tag by clicking the appropriate

button on the tag toolbar above the editor window. All the buttons have tooltips associated with

them that explain their meanings, but the most important distinction to remember about the tag

set is that case signals whether an item should be considered ambiguous with regard to its

potential word class or not, with uppercase indicating non-ambiguity and lowercase ambiguity

in most cases, but potentially also a special syntactic role. If a tag that has been suggested

through the morphological analysis already seems to be correct, then the word itself need not

be included in the lexicon because the same tag, or an even better one, due to additional con-

textual information, would most likely be assigned during the analysis phase, so keeping it in

the lexicon will actually increase redundancy. For instance, nearly all {-ly} adverbs will auto-

matically be tagged correctly as ‘R’, so usually these don’t need to be kept. Instead, more time

should be spent trying to understand the function of words that may be incorrect, ambiguous,

or have no suggested tag (marked as ‘???’). In the above example, the word music, due to its

presumed {-ic} suffix has been marked as being predominantly a modifier, i.e. usually an

adjective, but while it may well act as a kind of modifier as the first element in a compound

noun, it would be best to change this tag to ‘N’.

The remaining menus items, ‘Edit modes file’, ‘Edit topics file’, and ‘Syntax files’, all provide

access to facilities for editing or creating particular feature category definitions. Modes are se-

mantico-pragmatic markers/key-phrases that indicate specific levels of verbal interaction that,

on their own or in combination with syntactic features, assist DART in identifying speech acts.

Thus, for instance an expression of a condition3, unless it occurs inside a ‘what if’ question,

signals that the speaker is conveying information that constrains the options provided in the

context of the dialogue, in a similar way to how presenting an alternative (see below) ‘widens’

them. Using the little word please, where it is not a verb, clearly indicates that the speaker is

making a(n indirect) request, even if the containing syntactic unit takes the form of an interro-

gative, while a ‘discourse marker’ like I see marks the utterer’s awareness or understanding of

what has been said, etc.

Topics, on the other hand, represent key-phrases that predominantly reflect the true semantic

content of a syntactic unit, i.e. what is being talked about. Potential everyday (generic) topics

that can be expressed as patterns, for instance, are phrases that indicate dates, times and dura-

tions, places, directions, etc., which may also become specifiers for otherwise underspecified

referring expressions. More domain-specific ones, e.g. in the Trainline context, would be pat-

terns relating to bookings, particular types of tickets, seat options, journeys, rail cards/passes,

etc. The latter are of slightly lesser interest to the pragmatic annotation side, but of course still

provide valuable information that is worth investigating, especially if one wants to explore how

3 Mode labels in the examples below are given in italics.

32

particular topics (such as making appointments, etc.) are dealt with in a number of different

dialogues, and by different speakers or speaker groups.

The modes, topics, and basic syntax files for turn-initial short units (such as discourse markers,

yeses, nos, etc.), basically follow the same format. Each line that does not begin with a comment

symbol (#) specifies a label associated with a particular category, followed by a space double

colon and a space (::). The remaining part of each line then contains one or more regular

expression patterns, separated by three underscores (___). These patterns may minimally repre-

sent individual words, but unless these unmistakably represent a particular category, this could

often be misleading, from either a computational or a conceptual linguistic perspective. For

instance, on the computational side, the pattern that represents the mode alternative in the cur-

rent implementation is defined as either___\bor\b (\b indicating a word boundary), where

simply specifying either___or would intuitively seem correct to the average linguist who is not

accustomed to computational analysis, but lead to fatal errors because not only would this quite

rightly find either, neither, and or, but also floor, flour, hour, poor, boring, organism, etc., just

because the latter words contain the character sequence <o> + <r>. Similarly, on the linguistic

level, if we expected to be able to correctly identify all occurrences of performatives by simply

specifying the performative marker hereby as a pattern, but ignoring that this ought to be pre-

ceded by a first-person pronoun, we could potentially end up with a number of false positives

where some performative action is only being reported on, etc. Thus, writing appropriate pat-

terns of this kind would minimally require a good understanding of regular expressions and an

appropriate amount of linguistic expertise. However, the researcher who expects a particular

pattern to be indicative of a specific phenomenon in the data could always at least test it directly

on the data by creating the (sub-part of the) expression inside the concordancer and then pasting

it into the corresponding resource file. This, in itself could potentially represent a good exercise

for researchers who have little experience thinking in terms of linguistic patterns.

Regarding sub-categories for modes and topics, there is again an option to divide these into

generic and domain-specific ones, although in general, modes tend to be generic in nature, and

there is only one additional modes file so far, which specifies patterns that deal with punctuation.

This was actually incorporated into DART only at a relatively late stage because the analysis

methodology was originally developed to work with files that excluded all punctuation, and

also to some extent why the punctuation is not added directly to the text, but instead indicated

by an empty XML element (e.g. <punc type=”stop” />). The topic files, however, are clearly

divided, and usually it is best to create a new domain-specific one for each corpus that is added,

unless the new data is very similar to an earlier corpus. As the labels for modes and topics are

also used to create value entries for post-processing tasks, in case it is impossible to define a

particular pattern for a feature that is frequently needed, it is also possible to add an ‘empty’

label by simply writing the label name followed by the space, double colon, and space on a

separate line in the resource file.

33

All the resource files discussed immediately above, plus the syntax files for short syntactic

units, not only have the same basic syntax for defining patterns, but are also compiled at run-

time into more complex regular expression patterns that make counting and adding these

features to the annotation output easier. The main difference between modes and topics files,

on the one hand, and ‘short syntax’ files, on the other, is that the latter are not subdivided into

generic and domain-specific files, but rather organised into specific categories that are then

checked for and removed from the beginnings of longer syntactic unit lines in a specified order

and marked up as separate syntactic elements. In contrast, the other features are all added to the

respective attribute labels according to their frequency of occurrence, so that the ordering inside

the files is in fact irrelevant and can be used more to group related labels for conceptually simi-

lar categories together, where it is also advisable to add a comment line before the beginning of

each group.

The remaining syntax files represent DART’s ‘grammars’ for the major syntactic categories

and, currently, editing the analysis routines unfortunately still requires considerable program-

ming expertise and an in-depth understanding of almost all the processing mechanisms involved,

so tinkering with these is not for the faint-hearted and can easily lead to serious annotation

errors. Further improvements to produce grammar files that would be easier to understand and

manipulate for the ‘average linguist’ may be developed in future, though, in order to separate

the linguistic logic behind the processing even further from that required for the programming

part.

8 Keyboard shortcuts

8.1 Corpus File Handling

The following shortcuts are used for loading or removing files from the IO workspace, or

creating a new XML corpus file.

Shortcut Description

Ctrl + Alt + d or F2 load complete corpus folder

Ctrl + Alt + f load individual file(s)

Ctrl + Alt + n create new file

Del remove files selected in workspace

34

8.2 Editor Shortcuts

The shortcuts described below work in the XML editor and mostly in the resource editor

windows, too, depending on the functionality necessary for given tasks. Please note that, unlike

in many other editors, the shortcuts for copying, cutting & pasting do not have corresponding

entries on the ‘Edit’ menu.

Shortcut Description

Ctrl + s save

Ctrl + w close editor window/file

Ctrl + a select all

Ctrl + c copy

Ctrl + x cut

Ctrl + v paste

Ctrl + b copy filename to clipboard

Ctrl + f find

Ctrl + h replace

Ctrl + t renumber turns

Ctrl + u renumber units

Ctrl + Shift + t test unit

Ctrl + + enlarge font size

Ctrl + - decrease font size

F3 find next selection

Shift + F3 find previous selection

F5 refresh display/colour coding

Shift + F5 insert date and time

35

Ctrl + q tag selection as quote

8.3 Punctuation Shortcuts

There are a number of special shortcuts defined inside the annotation editor for quickly inserting

different punctuation tags. In general, there are two versions of these, one that only inserts the

tag, and the other that inserts the tag and a line break.

Shortcut Description

Ctrl + . stop

Ctrl + Alt + . stop + newline

Ctrl + , level

Ctrl + Alt + , level + newline

Ctrl + ! exclam

Ctrl + Alt + ! exclam + newline

Ctrl + ? query

Ctrl + Alt + ? query + newline

Ctrl + : incomplete

Ctrl + Alt + : incomplete + newline

8.4 Annotation & Tagging

The shortcuts below trigger the two different types of annotation.

Shortcut Description

Ctrl + Alt + a annotate corpus/file(s)

Ctrl + Alt + t tag corpus/file(s)

8.5 Analysis Shortcuts

The following shortcuts are relevant in an analysis context, and work for all the tabs.

36

Shortcut Description

Ctrl + r run the analysis (based on selected analysis tab)

Ctrl + o save analysis output to file (based on selected analysis tab)

9 Known Issues

When ‘installing’ DART into a folder that contains Chinese (or other ‘non-English’)

characters, DART is unable to load configuration and/or data files. In this case, please

install/copy the distribution into a folder without these characters in the path, e.g. C:\DART or

D:\DART.

Avoid installing DART into any of the Windows ‘Programs’ folders, unless you have adminis-

trative rights and are prepared to change many permissions for sub-folders and configuration

files. It appears that, by default, these folders do not allow you to add or modify files, which is

essential for running annotations or customising DART resources.

